

UNIVERSITY OF OSLO FACULTY OF DENTISTRY

Antibiotic Prophylaxis for Dental Treatment of Patients with Cardiovascular Disease: When and Why?

Rafael Marques da Silva 22.11.2006

Introduction

Antibiotic prophylaxis

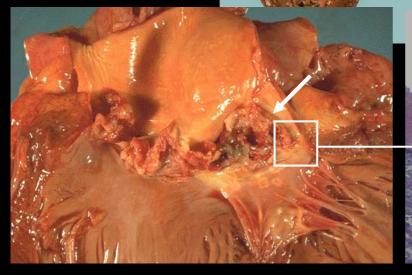
- Patients with heart conditions = INFECTIVE ENDOCARDITIS
- Patients with total joint replacement PROSTHETIC JOINT INFECTIONS

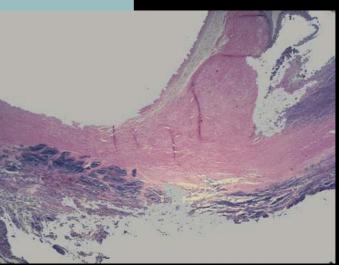
Definition

- Endocarditis: inflammation of the endocardial surfaces
- Infective endocarditis (IE): microbial infection of endocarditis lesions ("vegetations")

Epidemiology

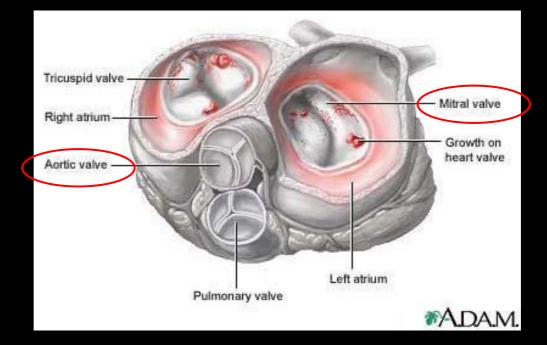
- Incidence: 1-5 cases in 100 000 persons/year
- Overall mortality rate: ~20%
- Men more susceptible than women (1.2 to 3 times)
- Median age: over 55 years
 - Reduced incidence of rheumatic heart disease
 - Increased rates of cardiac damage and repair with age
- Increased incidence in patients with no known previous cardiac disease
 - Young children (up to the age of 2 years)
 - Intravenous drug users

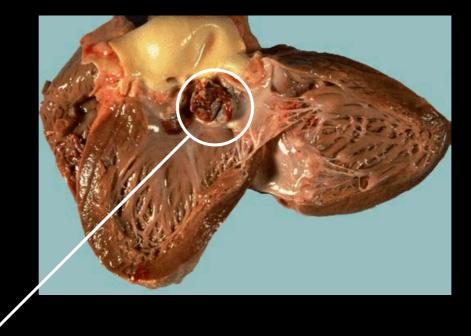

Pathogenesis


- Formation of non-bacterial thrombotic vegetations (NBTV)
- Endocardial lining damaged by certain pre-existing heart conditions (e.g. congenital or acquired valvular dysfunction, history of previous IE, prosthetic heart valves, etc.)
- Deposition of fibrin and platelets
- Adherence of circulating microorganisms (during an episode of bacteremia) to NBTV
- Conversion of the NBTV to IE

Infected Vegetations

- microorganisms
- fibrin
- platelets
- inflammatory infiltrate




Infected Vegetations

- Heart valves
- Endocardium

Infected Vegetations

- Embolize and occlude blood vessels and valvular orifices
- Decrease cardiac output
- Induce congestive cardiac failure

Conditions associated with risk of Infective Endocarditis (American Heart Association (AHA) Guidelines, 1997)

High-risk category

- Prosthetic cardiac valves
- Complex cyanotic congenital heart disease
 Surgically constructed shunts/conduit

Moderate-risk category

- Most other congenital alformations
- Acquired valvular
- Hypertrophic can liomyopathy
- Mitral values of appendix (MVP) with valuar regurgitation and/or

ITY OF OSLO

Conditions associated with risk of Infective Endocarditis (American Heart Association (AHA) Guidelines, 1997)

Negligible-risk category

- Isolated secundum atrial septal defect
- Surgical repair of atrial or ventricular septal defeation patent ductus arteriosus of more than 6 months duration
- Previous coronary artery bypass graft sat
- Physiological or functional heart month
- Previous Kawasaki disease without valvular dysfunction
- Cardiac pacemakers

00

- Implanted defibrilators

Conditions associated with risk of Infective Endocarditis (British Society for Antimicrobial Chemotherapy (BSAC) Guidelines, 2000

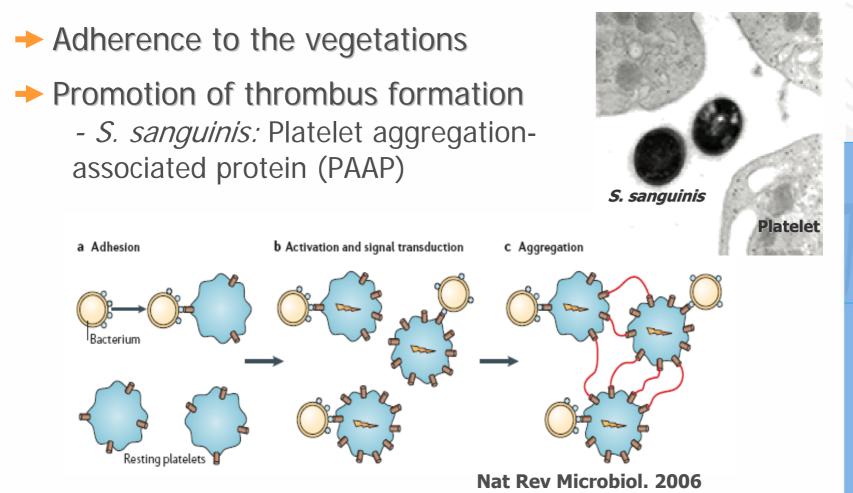
- History of previous IE
- Prosthetic cardiac valves
- Surgically constructed shunts of
- Complex congenital heart Cosa
- Complex LV outflow and rmalities (aortis steriosis, bicuspid aortic valves)
- Acquired valuation and MVR with substantial leaflet pathology and regurgitation

Microbiology

- Streptococci: recognized etiological agents of IE (Bayliss *et al*, 1983; Douglas *et al*, 1993)
- Staphylococcus aureus: leading cause of IE (Fowler et al, 2005; Miro et al, 2005; Cabell et al, 2002)
- Overall worsening of the clinical course
- Increased number of serious complications
- Higher mortality rates

Microbiology

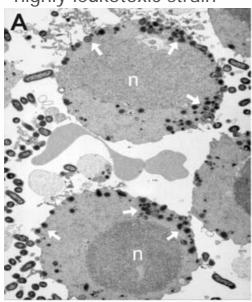
- HACEK group bacteria (*Haemophilus* spp., *Actinobacillus* actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens and Kingella spp.): 5-10% cases
- Fungi, Mycobacterium spp., chlamydiae, and Mycoplasma spp.: low frequency

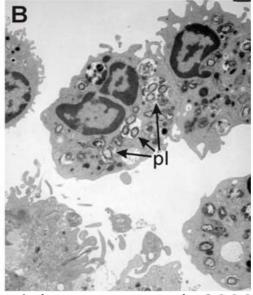


Bacterial Virulence Factors

Adherence to the vegetations

Bacterial Virulence Factors




Bacterial Virulence Factors

- Adherence to the vegetations
- Promotion of thrombus formation
- Resistance to phagocytosis and killing by PMNs
 - S. gordonii
 - A. actinomycetemcomitans

A. actinomycetemcomitans highly leukotoxic strain

A. actinomycetemcomitans low leukotoxic strain

Johansson et al, 2000

Prevention of Infective Endocarditis by Antibiotic Prophylaxis

- The exact mechanisms behind antibiotic prophylaxis are unknown
- Efficacy of antibiotic prophylaxis: animal studies and clinical experience

Prevention of Infective Endocarditis by Antibiotic Prophylaxis

Mechanisms of Antibiotic Prophylaxis (animal models)

- I. Reduction of the incidence and magnitude of bacteremia
- II. Prevention of adherence to the vegetations
- III. Inhibition of bacterial growth on the vegetations

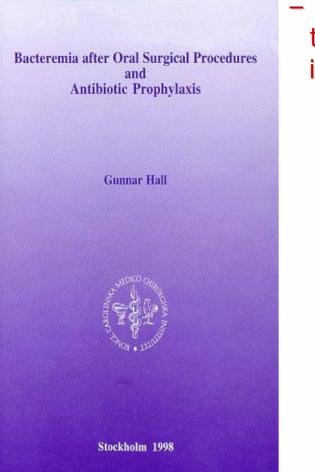
Bacteremia after Antibiotic Prophylaxis in Humans

Conflicting results

Bacteremia after Antibiotic Prophylaxis in Humans

Bacteremia after Oral Surgical Procedures and Antibiotic Prophylaxis

Gunnar Hall



Stockholm 1998

- Investigated the incidence and magnitude of postextraction bacteremia
- Healthy patients randomly assigned to receive active drug or placebo
- Test groups: Penicillin V, Amoxicillin, Erythromycin, Clindamycin and Cefaclor
- Blood samples: lysis-filtration technique
- Antibiotic prophylaxis did not reduce the incidence or magnitude of bacteremia after dental extraction
- The absence of reduction in bacteremia in the prophylaxis was not due to high bacterial resistance

Bacteremia after Antibiotic Prophylaxis in Humans

 The protective effect of prophylaxis must be the result of interference with crucial steps in the development of IE

Prevention of Infective Endocarditis by Antibiotic Prophylaxis

Mechanisms of Antibiotic Prophylaxis (humans)

- I. Reduction of the incidence and magnitude of bacteremia
- II. Prevention of adherence to the vegetations
- III. Inhibition of bacterial growth on the vegetations

Oral Bacteria, Dental Treatment and Infective Endocarditis

- Oral bacteria and IE: a century of association
- Bacteremia of oral origin
 - Transient type
 - Various magnitudes

	ypes of defital procedure
Procedure	Prevalence
Extractions	
• single	51%
 multiple 	68-100%
Periodontal surgery	
 flap procedure 	36-88%
 gingivectomy 	83%
Scaling and root planing	8-80%
Periodontal prophylaxis	0-40%
Endodontics	
 intracanal instrumentation 	0-31%
 extracanal instrumentation 	0-54%
Endodontic Surgery	
 flap reflection 	83%
 periapical curettage 	33%
Toothbrushing	0-26%
Dental flossing	20-58%
Interproximal cleaning with toothpicks	20-40%
Irrigation devices	7-50%
Mastication	17-51%

Table I. Prevalence of bacteremia after various types of dental procedures

Seymour et al, 2000

Oral Bacteria, Dental Treatment and Infective Endocarditis

- Are dentists the real culprits for IE?
 - A number of studies reporting IE after dental procedures
 - High frequency of bacteremia after oral invasive procedures
 - High recovery rate of oral streptococci in IE cases

Oral Bacteria, Dental Treatment and Infective Endocarditis

- Are dentists the real culprits for IE?
 - Bacteremia from dental procedures: low intensity compared to ID⁹⁰
 - Bleeding is a poor predictor of dental-induced bacteremia
 - Dental procedures: no risk of cumulative bacteremia
 - Cumulative exposure to bacteremia from daily activities may be up to 10⁶ greater than operative dental procedures (Roberts, 1999)
 - Less than 4% of all IE cases are related to dental treatment-induced bacteremia (Guntheroth, 1984; Strom *et al*, 1998)

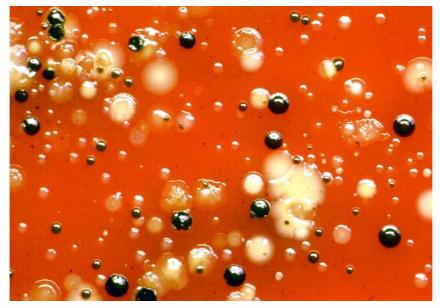
Dental Procedures Considered for Antibiotic Prophylaxis in Risk Patients (AHA, 1997)

- Dental extractions
- Periodontal procedures, including surgery, scaling, root planing and probing
- Dental implant placement, reimplantation of avulsed teeth
- Endodontic instrumentation or surgery only beyond the apex
- Subgingival placement of antibiotic fibers or strips
- Initial placement of orthodontic bands
- Intraligamentary local anesthetic injections
- Prophylactic cleaning of teeth or implants with anticipated bleeding
- Incision and drainage or other procedures involving infected tissues

Table II. AHA Guidelines for Antibiotic Prophylaxis

Situation	Agent	Regimen
Standard general	Amoxicillin	Adults: 2.0 g; children: 50 mg/kg
prophylaxis		Orally 1 hour before procedure
Unable to take	Ampicillin	Adults: 2.0 g; children: 50 mg/kg
oral medications		Intramuscularly (IM) or intravenously
		(IV) within 30 min before procedure
Allergic to	Clindamycin	Adults: 600 mg; children: 20 mg/kg
penicillin	-	Orally 1 hour before procedure
	OR	
	Azithromycin or	Adults: 500 mg; children: 15 mg/kg
	clarithromycin	Orally 1 hour before procedure
Allergic to	Clindamycin	Adults: 600 mg; children: 50 mg/kg
penicillin and unable to take oral medications		IV within 30 min before procedure
		Daiani <i>et al.</i> 199

Dajani *el al*, 1997

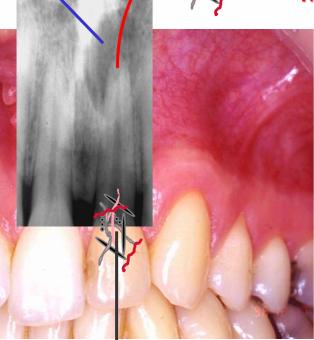

Dental Procedures Not Recommend for Antibiotic Prophylaxis (AHA, 1997)

- Restorative dental procedures with or without retraction cord
- Intracanal endodontic procedures, post placement and buildup
- Local anesthetic injections
- Placement of rubber dams
- Postoperative suture removal
- Placement of removable prosthodontic or orthodontic appliances, and orthodontic appliance adjustment
- Taking oral impressions
- Fluoride treatments
- Taking oral radiographs
- Shedding of primary teeth

Endodontics

- Pulp and periapical disease: microbial infection (Kakehashi et al, 1965; Sundqvist, 1976; Möller et al, 1981)
- Polymicrobial

Endodontics


- Pulp and periapical disease: microbial infection (Kakehashi et al, 1965; Sundqvist, 1976; Möller et al, 1981)
- Polymicrobial
- Bacteremia
 - Non-existent (Bender *et al,* 1960 and 1963; Baumgartner *et al,* 1976)
- Sampling, transport and culture methods ???

UNIVERSITY OF OSLO FACULTY OF DENTISTRY

Teeth with asymptomatic apical periodontitis

Intracanal instrumentation: 31% Instrumentation beyond the apex: 54%

Application of rubber dam

Endodontic therapy

Bacteremia

Debelian, GJ. 1997. Bacteremia and Fungemia in Patients Undergoing Endodontic Therapy. Thesis, University of Oslo

Antibiotic Prophylaxis for Dental Procedures in High-Risk Patients (BSAC, 2006)

Dental procedures requiring antibiotic prophylaxis

- All dental procedures involving dento-gingival manipulation
- Endodontics

High-risk cardiac conditions requiring antibiotic prophylaxis

- History of previous IE
- Prosthetic cardiac valves
- Surgically constructed shunts/conduits

Table II. Antibiotic Prophylaxis for Dental Procedures (BSAC)

Population	>10 years	≥5 to <10 years	<5 years
General	Amoxicillin 3 g	Amoxicillin 1.5 g	Amoxicillin 750 mg
	1 h pre-procedure	1 h pre-procedure	1 h pre-procedure
Allergic to penicillin	Clindamycin 600 mg	Clindamycin 300 mg	Clindamycin 150 mg
	1 h pre-procedure	1 h pre-procedure	1 h pre-procedure
Allergic to penicillin and unable to swallow capsules	Azithromycin 500 mg	Azithromycin 300 mg	Azithromycin 200 mg
	oral suspension	oral suspension	oral suspension
	1 h pre-procedure	1 h pre-procedure	1 h pre-procedure
Intravenous regimen expedient	Amoxicillin 1 g IV	Amoxicillin 500 mg IV	Amoxicillin 250 mg IV
	just before procedure	just before procedure	just before procedure
Intravenous regimen expedient and allergic to penicillin	Clindamycin 300 mg IV	Clindamycin 150 mg IV	Clindamycin 75 mg IV
	at least 10 min before procedure	at least 10 min before procedure	at least 10 min before procedure

Reasons to promote the use of prophylactic regimens for IE prophylaxis

- IE results in high morbidity and mortality
- Prophylaxis is a long-standing medical practice
- IE prophylaxis follows logical principles (limited targeted population/procedures, limited pathogens, short-course regimens, reasonably safe and inexpensive)
- Animal models support prophylaxis
- Medico-legal concerns

Reasons for challenging the use of prophylactic regimens for IE prophylaxis

- IE prophylaxis has not resulted in a decreased incidence of the disease
- No published, controlled clinical trials in humans
- Transient bacteremias are common events
- Individuals at-risk for IE are not easily identified
- False sense of security for patient and healthcare provider
- Potential for increasing antimicrobial resistance and adverse effects of antibiotics
- Poor compliance by patient and healthcare provider

UNIVERSITY OF OSLO

Conclusions

- The use of antibiotics does not guarantee prevention of IE in all cases
- Prevention of IE by antibiotic prophylaxis has been proven to be effective in experimental animal models, but not always in humans
- Antibiotic prophylaxis prior to dental treatment in highrisk patients remains reasonable and prudent, although evidence for its efficacy is currently lacking
- Greater emphasis should be placed on improving oral health, especially in high-risk patients