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1. Abstract  

Alzheimer’s disease (AD) and Parkinson’s disease 

(PD) are the two most common neurological 

conditions in man. Amyloidosis and neuro-

inflammation are central to the pathology of both these 

diseases. The systemic inflammatory nature of both 

these conditions and particularly the origin of both the 

systemic inflammation and neuro-inflammation are 

becoming most relevant in pursuing effective 

treatment regimes. In this review, the link between 

periodontitis and AD and PD is discussed emphasizing 

the role of amyloidosis. Attention is also drawn to how 

the keystone bacterium in periodontitis, 

Porphyromonas gingivalis and its cellular 

inflammagens e.g. lipopolysaccharide (LPS) and 

proteases (gingipains), which may play a crucial role 

in driving systemic inflammation and 

neuroinflammation. Treatment and prophylaxis of AD 

and PD are also discussed. 

2. Keywords: Periodontitis; Amyloidosis; 
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3. Introduction 

Periodontitis, which is a common disease in the elderly 

population, has been associated with both AD [1-6] 

and PD [7-12]. It affects the supporting tissues of teeth 

and can lead to tooth loss if untreated. Several of the 

>1,000 bacteria identified in the oral cavity have been 

found in diseased periodontal pockets. 

A keystone organism in this disease is the Gram-

negative anaerobic rod Porphyromonas gingivalis [13-

15]. According to the keystone-pathogen hypothesis, 

certain low-abundance microbial pathogens such as P. 

gingivalis can induce inflammatory disease by 

remodeling a normally benign microbiota into a 

dysbiotic one [14,15].A healthy periodontium is very 

important for the maintenance of an adequate quality of 

life. In Americans >65 years of age almost two-thirds 

(62.3%) had one or more periodontitis sites with ≥5 mm 

of clinical attachment loss and almost half had at least 

one site with a probing pocket depth of ≥4 mm [16].  

The authors pointed out that the older adult population 

is growing rapidly in the USA and by 2040, the number 

of adult’s ≥65 years of age will have increased by about 

50%. It should be emphasized that periodontitis is not 

only related to local teeth problems. Bacteria from 

periodontitis sites can spread systemically through the 

blood stream (bacteremia), which is the common, but 

not the only way of systemic spread in periodontitis (for 

a review see [17]). Other routes of systemic spread 

could be by circumventricular organs, perivascular 

spaces, the olfactory tract and olfactory unsheathing  
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cells. A bacteremia can occur several times each day 

from a patient with periodontitis and has been 

estimated to last for up to 3 hours [18]. It can be 

initiated by dental treatment, tooth brushing, flossing, 

chewing and use of toothpicks [19] and contains a 

wide spectrum of bacteria [20]. The aim of the present 

review is to discuss the possible link between 

periodontitis and AD and PD emphasizing the role of 

amyloidosis. Attention is also drawn to how the 

keystone bacterium in periodontitis, P. gingivalis and 

its cellular inflammagens, i.e., lipopolysaccharide 

(LPS) and proteases (gingipains), can play a crucial 

role in driving systemic inflammation and 

neuroinflammation. Treatment and prophylaxis of AD 

and PD will also be discussed. An outline of the review 

is presented in (Figure 1). 

 

Figure 1: 1) Periodontitis and 2) the spread of bacteria in the 

bloodstream; with specific focus on 3) Parkinson’s disease (PD), 4) 

Alzheimer’s disease (AD), 5) liver disease and amyloidosis. 6) 

Central to periodontitis and bacteria is also increased iron levels in 

AD, PD and amyloidosis. 7) The Antimicrobial Protection 

Hypothesis is discussed together with 8) treatment and prophylaxis 

focusing on amyloidosis OR increased iron levels OR bacteria in 

circulation, and the role of nutraceuticals. 

3.1. Alzheimer’s disease and Parkinson’s disease  

AD and PD are the most common neurodegenerative 

diseases in man. They have a number of similarities 

[21], but also differences. Some of the similarities 

have been listed in Table 1.  

Table 1: Major similarities between Alzheimer’s and Parkinson’s 

disease*. 

Age-associated with a late debut. 

Protein misfolding diseases. 

Degenerative processes accompanied by 

neuroinflammation and systemic (inflammaging) 

inflammation. 

Alterations in the peripheral immune system 

cytokine network (increased blood levels of IL-6, 

IL-1β and TFNα). 

Several genes related to the immune system 

considered as risk factors. 

The balance of antioxidant and oxidant system 

activity disturbed in different cells. 

*Accumulated from Boyko et al. [21]. 

Both are progressive, age-related neurodegenerative 

diseases with a late debut. They are characterized by 

dementia with symptoms such as memory impairment, 

problems with orientation and task performance. The 

estimated prevalence of AD in the population >65 years 

of age is 10%-30% and the incidence 1%-3% [22]. 

Most patients with AD (>95%) have the sporadic form, 

which affects one in eight adults over 65 years of age 

[23]. 

A common feature of PD is the presence of 

intracytoplasmic inclusions that contain the protein, α-

synuclein (AS). The presence of toxic aggregated forms 

of AS (e.g. amyloid structures) in PD is thought to 

signal the approach of subsequent pathology. At any 

time, PD affects 1%-2% per 1,000 in the population. Its 

prevalence increases with age and 1% of the population 

above 60 years is affected [24].  

Male gender and advancing age are independent risk 

factors [25]. Traditionally, a higher male frequency has 

been reported in PD and a higher female frequency in 

AD [26]. Like AD, PD is mostly sporadic and familial 

forms of the disease constitute only a minor part <10%) 

of all cases [27]. 

3.2. Amyloidosis 

Aggregation of proteins into amyloid fibrils and 

deposition of these fibrils into plaques and intracellular 

inclusions are hallmarks of amyloid diseases [28,29]. 
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Accumulation and deposition of amyloid fibrils are 

collectively known as amyloidosis. At least 30 

different proteins can be involved in amyloidosis of 

humans. Amyloidosis has been related to many 

pathological conditions that can be associated with 

ageing, e.g. AD, PD, type II diabetes and dialysis-

related amyloidosis [29,30]. In amyloidosis normally 

soluble precursors undergo pathological 

conformational changes and polymerize as insoluble 

fibrils with the β-pleated sheet conformation [31], 

resulting in vital organ dysfunction, especially in 

heart, kidney and nerves and eventually death [28,32]. 

Genetic predisposition or dysfunctions of the immune 

system may favor amyloid fibril formation. Microbial 

amyloid has been claimed to have a role in 

neurodegeneration [33,34]. 

3.3. Relationship between Porphyromonas 

gingivalis and amyloidosis 

Lipopolysaccharide-initiated coagulation is 

accompanied by a proteolysis of fibrinogen implying 

that the generated fibrin is both inflammatory and 

resistant to fibrinolysis. Interestingly, the form of 

fibrin produced is amyloid in nature because much of 

its normal α-helical content is transformed to β-sheets, 

as occurs with other proteins in established 

amyloidogenic and prion diseases [34]. A recent study 

by Nie et al. [35] found that chronic systemic P. 

gingivalis infection in mice increased inflammatory 

responses and Aβ-producing molecules, i.e., host Aβ 

precursor protein- AβPP cleaving secretase enzymes 

in the liver. Peripheral clearance of Aβ is known to 

occur primarily in the liver and is undertaken by 

monocytes/macrophages through phagocytosis 

[36,37]. In liver macrophages P. gingivalis has been 

shown to induce a rapid production of interleukin 1-

beta (IL-1 β) followed by intracellular accumulation of 

Aβ through activation of Toll-like receptor 2/nuclear 

factor kappa B (TLR2/NF-κB) signaling [35]. In order 

to induce accumulation of Aβ, NF-κB-dependent 

cathepsin (Cat) B was needed for cleaving pro-IL-1 β 

and processing AβPP [35]. Another focus of the Nie et 

al. [35] study was Aβ1-42, which is the toxic form of 

Aβ in AD, together with Aβ3-42. The latter occurs 

earlier in AD than Aβ1-42. CatB was shown to 

stimulate intracellular production of Aβ including Aβ3-

42 which produces IL-1 β promoting brain 

inflammation. CatB increased the levels of Aβ3-42 in 

the liver macrophages of P. gingivalis-infected mice in 

vivo and P. gingivalis-infected macrophages in vitro. 

Aβ3-42 levels were two-fold higher than Aβ1-42 

levels. Aβ3-42, which is detected exclusively in the AD 

brain, also caused significant death of macrophages and 

reduced their phagocytic capacity compared to that of 

Aβ1-42. This study was significant because it 

confirmed that P. gingivalis could have systemic effects 

related to AD. There is reason to believe that blood-

derived Aβ can enter the brain and cause Aβ-related 

pathologies and functional deficits in neurons of the 

hippocampus thereby contributing to the pathogenesis 

of AD [38]. Local production of Aβ in the brain induced 

by P. gingivalis has been detected in AD brains from in 

vivo experimental animal models [39,40] and possibly 

also in humans [41]. Thus, Ilievski et al. [39] found that 

chronic oral application of P. gingivalis to wild type 

mice caused deposition of extracellular Aβ1-42 in the 

parenchyma of hippocampi accompanied by 

neurodegeneration and local inflammation, similar to 

what was reported previously [42]. 

Furthermore, Leira et al. [40] found that experimental 

periodontitis in mice was associated with long-term 

increase of Aβ1-42. P. gingivalis may also initiate 

amyloid production in PD patients. A recent study 

reported major virulence factors of P. gingivalis such 

as gingipain R1 (RgpA) and LPS in the circulation of 

such patients [11]. 

This probably caused presence of amyloid (fibrin 

(ogen) in the blood plasma of these patients, which may 

have affected the development of PD [11,43]. 

In support of this, LPS-binding protein (LBP) has been 

found to reverse the amyloid state of fibrin seen in type 

2 diabetes with cardiovascular co-morbidities [30,44]. 

3.4. Possible role of Porphyromonas gingivalis in 
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Alzheimer’s disease and Parkinson’s disease 

Several recent papers have implicated an association 

between P. gingivalis and AD [4,35,38,39,45-49]. In 

addition, studies have reported an association between 

periodontitis and PD. Thus, Chen et al. [3] found in a 

nation-wide population-based case control study that 

patients with periodontitis (n=5,396) had a 

significantly higher risk of developing PD than 

controls (n=10,792) matching in sex, age, index of 

year (occurrence of periodontitis) and comorbidity. 

Chen et al. [10] also reported that patients with 

periodontitis (n=4,765) who had been subjected to 

dental scaling over five consecutive years, had a 

significantly lower risk of developing PD than controls 

without periodontitis (n=10,060). Other reports 

supporting an association between periodontitis and 

PD have also been published [7-9,12,38].  

A recent study reported major virulence factors of P. 

gingivalis such as gingipain R1 (RgpA) and LPS in the 

circulation of PD patients [11]. This may have induced 

systemic inflammation, hyper coagulation, presence of 

amyloid (fibrin (ogen) in plasma and ultrastructural 

changes in the blood platelets of these patients [11,43]. 

3.5. Possible role of amyloidosis in Alzheimer’s 

disease 

In AD, accumulation of amyloid beta (Aβ) and 

neurofibrillary tangles are major characteristics in the 

brain. Aβ is considered as a neurotoxic peptide [50]. 

This toxicity may be exerted in a number of ways such 

as through pore formation causing leakage of ions, 

disruption of cellular calcium balance and loss of 

membrane potential. Aβ can also promote apoptosis, 

cause synaptic loss and disrupt the cytoskeleton [51]. 

Although the Aβ plaques are generally thought to be 

harmful, Aβ oligomers, which can be produced both 

extracellularly and intracellularly, have been 

suggested to be the primary noxious form [51]. The 

Amyloid Cascade Hypothesis maintains that the 

neurodegeneration in AD is due to abnormal 

accumulation of Aβ plaques in various areas of the 

brain [52]. This hypothesis has continued to gain 

support over the last two decades, particularly from 

genetic studies. Thus, inter-species comparative gene 

expression profiling between AD patients’ brains and 

two mouse models were performed to determine the 

relative importance of these factors [53]. Gene 

expression commonly changed in AppNL-G-F/NL-G-

F mice and gene expression in the human AD cortices 

correlated with the inflammatory response or 

immunological disease. Among the expressed AD-

related genes C4a/C4b, Cd74, Ctss, Gfap, Nfe212, 

Phyhd1, S100b, Tf, Tgfbr2 and Vim were increased in 

the AppNL-G-F/NL-G-F cortex as amylogenesis 

proceeded with increased gliosis. Genes commonly 

changed in the 3xTg-AD-H and human AD cortices 

correlated with neurological disease. The AppNL-G-

F/NL-G-F cortex showed altered expression of genes 

defined as risk factors for AD by genome-wide 

association study or identified as genetic nodes in late-

onset AD. These results indicated a strong correlation 

between cortical Aβ and the neuroinflammatory 

response. 

3.6. Possible role of amyloidosis in Parkinson’s 

disease 

In PD, the progressive impaired motor function is a 

result of dopaminergic neuronal loss, particularly in the 

substantia nigra [54]. A common finding from 

degenerating dopaminergic cells is intracellular 

inclusions of particles, known as Lewy bodies (LBs) 

[55,56]. The major component of LBs is the fibrillary 

form of AS. This reflects the role of protein misfolding 

in PD pathology [57,58], which is believed to cause 

protein deposition and trigger degenerative signals in 

the neurons. Protein misfolding reduces the ability of 

AS to interact with vesicular trafficking and modulate 

neurotransmission. Conformational changes and co- 

aggregation of AS also initiate autophagy, which is one 

of the main pathways of AS degradation (for a review 

see [59]). The amyloid aggregation of AS is 

pathognomonic of PD and other neurodegenerative 

disorders [60]. AS can be found in a number of toxic 

aggregates that range from soluble oligomers to 
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insoluble amyloid fibrils. Prefibrillar oligomers are 

considered the most neurotoxic species. Gallea et al. 

[60] reported that AS oligomerization, by altering 

binding affinity and/or curvature sensitivity depending 

on membrane composition, had a great impact on 

protein-lipid interaction. This study brought new 

insights into how the formation of prefibrillar 

intermediate species may contribute to 

neurodegeneration due to a loss-of-function 

mechanism. 

3.7. P. gingivalis, iron and amyloidosis 

It is well established that bacterial growth and 

subsequent colonization are dependent on the ability 

of bacteria to acquire and use iron as an essential 

nutrient. Iron and serum ferritin also play an important 

pathological role in inflammatory and 

neurodegenerative diseases [61,62]. Both AD and PD 

are characterized by having increased iron levels that 

drives systemic inflammation as well as neuro-

inflammation [62-66]. It is also known that proteins 

transport iron across the brain microvascular 

endothelial cells prior to dementia and the onset of AD 

and that this process causes aggregation of amyloid-β 

peptides [67]. This aggregation is a key in cerebral 

amyloid angiopathy. In PD, AS pathology and 

dysfunction of iron homeostasis are also well-known 

[68]. 

Iron is of particular importance to the virulence of P. 

gingivalis, as the bacterium uses TonB-dependent 

outer-membrane receptors (HmuR, HusB, IhtA), 

gingipains proteases (Kgp, RgpA, RgpB) and 

lipoproteins and hemophore-like proteins (HmuY, 

HusA) to acquire iron and heme [69,70]. P. gingivalis 

has also the ability to cleave transferrin and this 

process is a significant mechanism for the acquisition 

of iron during periodontitis. The increased presence of 

iron, periodontitis and P. gingivalis might be central in 

the development of amyloidosis in AD and PD. 

3.8. Possible antimicrobial protection provided by 

amyloid 

Recently, a hypothesis - The Antimicrobial Protection 

Hypothesis - was formulated for AD suggesting that 

amyloid may provide possible antimicrobial protection. 

[71]. According to this hypothesis, Aβ deposition is an 

early immune response to a genuine or mistakenly 

perceived immune challenge. Aβ first entraps and 

neutralizes pathogens. Then Aβ fibrillization initiates 

neuroinflammatory pathways. These help fighting the 

infection and clear Aβ-/pathogen deposits. 

Accordingly, the Antimicrobial Protection Hypothesis 

tries to explain how an increased brain microbial 

burden can directly exacerbate Aβ deposition, 

inflammation and progression of AD. By doing so, this 

model extends but remains fairly consistent with the 

Amyloid Cascade Hypothesis.  

3.9. Treatment and prophylaxis of AD and PD 

Despite long-lasting attempts, researchers and medical 

professionals are still not able to provide an effective 

treatment for AD [72]. The problem may be related to 

failure in fully understanding the molecular 

mechanisms of AD, development of adequate drugs and 

early diagnostic approaches. As already indicated from 

the above, one possible therapeutic strategy might be 

elimination of Aβ and possibly phosphorylated tau (P-

tau) proteins and inhibition of their aggregation [73].  

Since AD can start many years before the clinical 

symptoms appear, it is important to find drugs that can 

be given at an early stage where the cognitive 

impairment is mild (MCI). This will require facilities to 

screen, diagnose and deliver a therapy to people at risk. 

According to the RAND report [74], there is hope that 

recent clinical trials may lead to disease-modifying 

therapy in the near future. The therapy is expected to 

treat early-stage AD to prevent or delay the progression 

to dementia.  

As far as PD is concerned, most treatment is anchored 

in pharmacological substitution of striatal dopamine, in 

addition to non-dopaminergic approaches to motor and 

non-motor symptoms and deep brain stimulation for 

intractable L-DOPA-related motor complications [75]. 

Restoration of striatal dopamine by gene-based and 

cell-based approaches have been tried and aggregation 
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and cellular transport of AS have become therapeutic 

targets. One of the greatest challenges in PD therapy is 

probably to identify markers for prodromal disease 

stages, which could allow disease-modifying therapies 

to start earlier. 

In this connection Ingar Olsen would like to repeat that 

Chen et al. [10] found that dental scaling, which is the 

commonest approach for treatment and prophylaxis of 

periodontal disease, significantly decreased the risk of 

PD. This approach seeks to eliminate subgingival 

plaque with P. gingivalis as a keystone bacterium in 

periodontitis. It cannot be excluded that poor oral 

health has neurological consequences by enabling P. 

gingivalis to deteriorate cognitive function [38]. It 

should also be mentioned that Dominy et al. [4] found 

P. gingivalis located in AD brains and that AD could 

be treated with small-molecule inhibitors of P. 

gingivalis gingipains. Thus, Kgp inhibitor COR271 

and RgpB inhibitor COR286 provided a dose-

dependent protection against P. gingivalis in SH-

SY5Y neuroblastoma cells. This indicated that a cheap 

and feasible prophylaxis in AD and PD could simply 

be by preventing accumulation of dental plaque. This 

prophylaxis should start early as it may take 10 years 

or so for periodontitis to develop neurological disease. 

Similarly, deposits of Aβ in the brain can start 10 to 20 

years before the clinical symptoms of cognitive 

decline and the diagnosis of AD is established [6]. 

New research on therapeutic drugs for 

neurodegenerative diseases have led to the 

development of multi target drugs, that possess 

selective brain monoamine oxidase (MAO) A and B 

inhibitory moiety, iron chelating and antioxidant 

activities, capacity to augment brain levels of 

endogenous neurotrophin (BDNF, GDNF VEGF and 

erythropoietin) and induce mitochondrial biogenesis 

[76,77]. Another therapeutic approach might be to 

directly address the increased levels of iron in AD and 

PD. Such an approach might limit iron for usage by 

bacteria like P. gingivalis and directly impact on its 

virulence. Molecules of interest might be lactoferrin 

(LF) and ergothioneine [78]. Both are nutraceuticals 

that can act as iron-mopping agents. In PD, iron 

chelation [79] with LF has been suggested to be an 

effective therapy for prevention and treatment. 

Furthermore, LF might protect vulnerable dopamine 

neurons from degeneration by preserving 

mitochondrial calcium homeostasis [80]. LF was also 

found to be important in AD, as iron chelator, where it 

may prevent iron deposition and has the ability to block 

Aβ-aggregation, tauopathy and neuronal damage [81]. 

It also has the ability to inhibit P. gingivalis and its 

resulting biofilm [82,83].  

3.10. Concluding remarks 

AD and PD are multifactorial diseases. The amyloid 

hypothesis and the assumption that in AD, Aβ toxicity 

is the primary cause of neuronal and synaptic loss, is 

being replaced by a more holistic and systemic disease 

paradigm [84]. The same is true for PD and AD. 

However, it seems clear that deposition of amyloid is 

related to the pathogenesis of both and that the keystone 

pathogen in periodontitis, P. gingivalis, can initiate 

such deposits. Therefore, a link between P. gingivalis 

and amyloidosis in the pathogenesis of AD and PD may 

exist. P. gingivalis and its cellular inflammagens, e.g. 

LPS and proteases (gingipains), may play a crucial role 

in driving systemic inflammation and 

neuroinflammation. The systemic inflammatory nature 

of both AD and PD and particularly the origin of both 

the systemic inflammation and neuro-inflammation, are 

becoming most relevant in pursuing effective treatment 

regimes. Treatment and prophylaxis may focus on 

amyloidosis or increased iron levels or bacteria in 

circulation and the role of nutraceuticals. We should 

continue practicing meticulous dental hygiene by 

removing dental plaque before it extends subgingivally 

and initiate periodontitis through its major pathogen, P. 

gingivalis. 
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